END SEMESTER EXAMINATION

Business Mathematics: CMBM0079

business wathematics: CMBM0079	
Total Marks: 100	Duration: 3 hrs
 Answer the following questions [CO1] Define identity matrix. Write down the expression for inverse of a matrix. 	1×10=10
iii. If a row or a column of a determinant becomes zero determinant will be	then the value of the
 iv. State true or false: Multiplication of two matrices is con v. Write down the formula for amount of compound inter vi. When a function y=f(x) is said to be maximum? 	nmutative in general. est.
 vii. The derivative of 35x at x= 1 is viii. When a function is said to be continuous? ix. Find the integral of 1/x. 	
x. When the limit of function exists?	
2. Answer briefly <u>any five</u> of the following questions i. Using the properties of determinants show that $\begin{vmatrix} 1 & 1^2 \\ 2 & 2^2 \\ 3 & 3^2 \end{vmatrix}$	$\begin{vmatrix} 2^2 \\ 4^2 \\ 6^2 \end{vmatrix} = 0 \text{ [CO1]}$
ii. If $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$, find A^3 . [CO2]	,
iii. Solve the following problem graphically Maximize $Z=3x+9y$ Subject to the constraints $x+3y \le 60; x+y \ge 10; x-y \le 0; x \ge 0; y \ge 0$	[CO2]
iv. Find the derivative of $y = x \sin(a + y)$ [CO2]	•
v. Let $f(x)$ be a function defined by $f(x) = \begin{cases} 4x - 5 \\ x - k \end{cases}$	$, x \le 2$, x > 2 Find k if
$\lim_{x\to 2} f(x) \text{ exists.} [CO2]$ vi. Evaluate $\lim_{x\to a} \frac{\sqrt{x+a}-\sqrt{x-a}}{\sqrt{x+a}}$ [CO2]	
vi. Evaluate $\lim_{x\to a} \frac{\sqrt{x+a}-\sqrt{x-a}}{\sqrt{x+a}}$ [CO2]	

3. Answer any *five* of the following questions [CO3]

5x7=35

- A person deposits No. 10,000 in a bank which he pays an interest of 6% per annum compounded continuously. How much amount will be accumulated in his account after 5 years?
- ii. A person invests money in a bank paying 6% interest compounded semiannually. If the person expects to receive Rs. 8000 in 6 years, what is the present value of the investment?

$$x + y + z = 3$$

iii. Solve the following equations by Cramer's rule 2x + 3y + 4z = 9

$$x + 2y - 4z = -1$$

iv. Find the maximum and minimum values of the following:

i.
$$f(x) = x^3 - 6x^2 + 9x + 15$$

v. If
$$y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$$
, prove that $2xy\frac{dy}{dx} = \frac{x}{a} - \frac{a}{x}$.

vi. Evaluate $\int \frac{2x+5}{x^2+5x-7} dx$

4. Answer any four of the following questions [CO4]

4×10=40

- i. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$
- ii. Using properties of determinant prove that $\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$
- iii. Using properties of the determinant show that $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz(x-y)(y-z)(z-x).$
- iv. A machine costing Rs. 50000 depreciates at a constant rate 8%. What is the depreciation charge for the 8th year? If the estimated useful life of the machine is 10 years, determine the scrap value.
- v. Evaluate the following:

a)
$$\lim_{x \to 5} \frac{2x^2 + 9x - 5}{x + 5}$$

b)
$$\lim_{x \to \frac{1}{4}} \frac{4x-1}{2\sqrt{x}-1}$$

vi. (a) Suppose
$$f(x) = \begin{cases} a+bx & , x < 1 \\ 4 & , x = 1 \\ b-ax & , x > 1 \end{cases}$$
 and if $\lim_{x \to 1} f(x) = f(1)$, what

are the possible values of a and b?

(b) If for
$$f(x) = \lambda x^2 + \mu x + 12$$
, $f'(4) = 15$ and $f'(2) = 11$, find λ and μ .

vii. Evaluate the following integrals:

a)
$$\int \left(x^2 + \frac{1}{x^2}\right)^3 dx$$

b)
$$\int x^2 e^x dx$$