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CHAPTER 2 
 

PROPAGATION OF LIGHT IN A FIBRE WAVEGUIDE 
 
 
 

2.1   THE WAVE NATURE OF LIGHT 

 
The perception of light is the mean by which the world can be viewed. The way everything 

is seen or visualized is due to the wave nature of light. The manner by which light travels 

can be seen by looking at the surface waves of water. Till the seventeenth century, it was 

believed that light consisted of a stream of luminous particles emitted by luminous sources. 

However later works by Maxwell in 1864 showed that light is an electromagnetic wave 

and so it is polarized in nature. This polarization effect also demonstrated that light waves 

are transverse in nature (i.e. wave motion in perpendicular to the direction in which light 

travels). The wave theory of light accounts for all phenomena related to the transmission of 

light. From the viewpoint of wave motion of light, the electromagnetic wave radiated by a 

small optical source is represented by a train of spherical wavefronts with the source at the 

centre as shown in Figure 2.1.  A wave front is defined as “the locus of all points in the 

wave train which have the same phase” [23, p.17].  

 

When the wavelength of light is much smaller than the object or opening (which it 

encounters), the wave fronts appear as straight lines to the object or opening. The light 

wave is then represented by a plane wave and the direction of travel is indicated by a light 

ray drawn perpendicular to the wave front.   
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Fig. 2.1: Optical wave fronts from point source 

 

 

2.2   WAVE THEORY OF OPTICAL WAVEGUIDE 

 
It was after mid-1960 that the idea of a communication system based on propagation of 

light within circular dielectric waveguides was considered. The propagation of light 

through an optical waveguide requires the solution of the Maxwell equation [23] which is 

discussed in section 2.2.2. Light travels within a circular dielectric waveguide by total 

internal reflection, the detail of which is discussed in section 2.2.1.  

 

2.2.1    Propagation of Light in Optical Fibre Waveguide 

An Optical fibre waveguide can be considered as a single solid dielectric cylinder called as 

the core having a refractive index of refraction ݊ଵ. The core is surrounded by a solid 

dielectric called the cladding having refractive index ݊௖௟ that is less than ݊ଵ. In addition to 

the core and the cladding the fibre may be encapsulated in an elastic, abrasion-resistant 

plastic material called as the buffer. The buffer adds mechanical strength to the fibre and 

shields the fibre from small geometrical irregularities, distortions, or roughness of adjacent 

surfaces [23]. The geometrical structure of an optical fibre wave guide is shown in Figure 

2.2.  
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Figure 2.2: Geometrical structure of an optical fibre waveguide 

  

The variation in the material composition of the core give rise to two commonly types of 

fibres. If the refractive index of the core is uniform throughout and undergoes an abrupt 

(step) change at the cladding, then it is called a step index fibre. On the other hand if the 

refractive index of the core varies as a function of the radial distance from the center, then 

it is called graded index fibre.  

 

The propagation of light along an optical fibre (waveguide) can be described in terms of a 

set of guided electromagnetic waves called the modes of the wave guide. These guided 

modes are trapped within the waveguide. Each guided mode is a pattern of electric and 

magnetic lines that is repeated along the fibre at intervals equal to the wavelength. The step 

and the graded index are divided into Single-mode and Multimode fibres depending on the 

number of modes supported by them. A single- mode fibre can sustain only one mode of 

propagation, whereas a multimode fibre can support hundreds of modes. Now each modes 

in a multimode fibre can propagate at slightly different velocity i.e. the modes in a given 

optical pulse arrive at the fibre end at different times thus causing the pulse to spread out in 

time as it travels along the fibre. This effect is known as Intermodal dispersion [23].    

 

A light ray can propagate along the length of a cylindrical waveguide as long as the ray is 

incident within the acceptance cone1 semi angle of the fibre which in turn is dependent on 

the refractive index of the core and cladding of the fibre [24] as shown in Fig. 2.3. The 

light should enter the fibre at an incident angle ߠ௔ such that the internal reflection angle ϕ 

is greater than the critical angle ߠ஼ . The light will be contained within the fibre and 

propagate to the far end due to total internal reflection. If the condition is not satisfied than 

the light will leak into the cladding. 

                                                   
I Acceptance cone is the maximum angle at which light must be incident at the core-cladding interface so that 
the angle is greater than the critical angle at the interface.  
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Fig. 2.3: The acceptance cone and propagation of light in an optical fibre 

 

The ray enters the fibre at an angle outside the cone and it will leave the core and will 

leave the fibre itself. The term Numerical Aperture (NA) is used as a figure of merit and is 

defined as the Sine of the largest angle contained within the cone of acceptance.  

The Numerical Aperture is given by – 

 

ܣܰ     = ඥ݊ଵଶ − ݊௖௟ଶ                      (2.1) 

where ݊ଵand ݊௖௟ represents the refractive index of the core and cladding of the fibre (single 

mode or multimode) respectively. 

The normalized difference ∆ between the core and cladding is given by- 

 

߂ .                = ௡భି௡೎೗
௡೎೗

                     (2.2) 

Thus Numerical Aperture (NA) can now be given as [24]- 

 

ܣܰ              = ݊ଵ√2∆                                      (2.3) 

 

However the propagation of light through a circular waveguide can also be approximated 

with the help of a parameter called the normalized frequency or V number which is defined 

as- 

    ܸ = ቀ2ߨ
଴ൗߣ ቁ × ܽ଴݊ଵ√2(2.4)                            ߂ 

Where ܽ଴ is the core radius of the waveguide (optical fibre),  ߣ଴ is the free-space 

wavelength, ߂ is the relative core-cladding index difference 
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If V˃˃10, the geometrical-optics results can explain the propagation effect in optical fibre, 

whereas for V˂10, the geometrical-optics results cannot explain the propagation effect. 

Thus to have a general framework for an optical waveguide for any arbitrary V number, it 

is necessary to take the Maxwell equations [24].  

 

2.2.2 The Maxwell Equation 

The Maxwell equation is used to derive relationship between the electric and magnetic 

fields in an optical waveguide. Assuming a linear, isotropic dielectric material having no 

current and free charges, the equations take the form [23]- 

 

     ∇ × ܧ = − డ஻
డ௧

                             (2.5) 

 

     ∇ × ܪ = డு
డ௧

                 (2.6) 

 

ܦ.∇      = 0                                     (2.7) 

 

ܤ.∇      = 0                                     (2.8) 

 

Where ܦ = ܤ and ܧ߳ =   .is the permittivity and µ is the permeability of the medium ߳ ,ܪߤ

 .represents the electric and magnetic field respectively ܪ and ܧ

Taking the curl of equation (2.5) and using equation (2.6), we get 

 

  ∇ × (∇× E) = −µ ப
ப୲

(∇× H) = −ϵµ பమ୉
ப୲మ

                       (2.9) 

 

Using vector identity, equation (2.9) becomes 

 

   ∇ × (∇× E) = ∇(∇. E)− ∇ଶE                          (2.10) 

 

Now using equation (2.7), equation (2.9) becomes 

 

                                                          ∇ଶE = ϵµ பమ୉
ப୲మ

                               (2.11) 
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Similarly taking the curl of equation (2.6), it can be shown that  

 

                                                          ∇ଶH = ϵµ பమୌ
ப୲మ

                                        (2.12) 

Equation (2.11) and (2.12) are the standard wave equation.  

 

Solving the Maxwell equation shows that the optical fibre waveguide has an infinite 

continuum of radiation modes that are not trapped in the core and guided by the fibre but 

are still solutions of the same boundary value problem. The radiation fields results from the 

optical power that is outside the fibre acceptance angle refracted out of the core. As the 

radius of the cladding is finite, some of the radiation gets trapped in the cladding. As core 

and cladding modes propagate along the fibre, mode coupling occurs between cladding 

modes and higher order core modes. A diffusion of power back and forth between the core 

and cladding modes occur which results in loss of power in the core modes [23].  

There are three types of modes in an optical fibre viz. the bound mode, refracted mode and 

leaky mode. An optical Fibre can switch between the different modes following a 

boundary condition which depends on the propagation constant ߚ given by  

 

݊௖௟݇଴ < ߚ < ݊ଵ݇଴ 

 

Where ݊ଵ and ݊௖௟ are the core and cladding refractive indices and ݇଴ = ఠ
஼

= ଶగ
ఒబ

, ݇଴ is 

called the wave number.  

 

The boundary between truly guided modes and leaky modes is defined by the cut off 

condition ߚ = ݊௖௟݇଴. If ߚ is less than ݊௖௟݇଴, then power leaks out from the core to the 

cladding. 

 

 

2.3.    ATTENUATION DUE TO CURVATURE LOSS IN A     

    MULTIMODE OPTICAL FIBRE 

 
Multimode fibres are the types of fibres which allow many modes to propagate through the 

waveguide. These fibres can be step index fibres and graded index fibres. Multimode step 
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index fibres have got large core diameters and large numerical apertures to facilitate 

efficient coupling to incoherent light sources such as light emitting diodes (LED’s). They 

are manufactured from multi-component glass compound or doped silica. On the other 

hand, multimode graded index fibres are also constructed from glass compound or doped 

silica but of higher purity to reduce losses. These fibres have diameter less than Multimode 

step index fibres. When the multimode step or graded index fibres are bent, then they 

suffer from radiation losses [25]. The radiation loss in optical fibre bends is based on the 

studies made by Miller and Marcatili and modified by Shevchenko. Their analysis lead to a 

straight forward formula for finding the attenuation loss  in multimode fibre due to bending 

 in terms of propagation constant (β), which is not far from cut-off as given by Gloge (஻ߙ)

[26]. 

஻ߙ                                                 = ଶఊమ(଴)
ఉ

݌ݔ݁ ቂ−2 ∫ ௥బݎ݀(ݎ)ߛ
௔బ

ቃ                                    (2.13) 

 

where    ߛଶ(ݎ) = ఉమோᇲమ

(௥ାோᇲ)మ
− ݊௖௟ଶ ݇଴ଶ                   (2.14) 

 

 .is the propagation constant of a wave in a waveguide ߛ

 

and                                           ݎ = ܴᇱߚ
݊௖௟݇଴൘ − ܴᇱ                               (2.15) 

ܴᇱ is the curvature radius, ݎ is the distance of propagation of the wave in the fibre guide 

and ܽ଴ is the core radius 

 

For a straight fibre, the mode field decreases as ݁ݎ)(0)ߛ−]݌ݔ − ܽ଴)]  in the cladding at a 

distance ݎ from the guide axis produces a loss for this mode proportional to 

ݎ)(0)ߛ2−]݌ݔ݁ − ܽ଴)]  

 

When a multimode fibre is put at a sharp bend (Macrobend) with a fixed radius of 

curvature, light rays are lost into cladding, which results in power loss and thus 

attenuation. For a slight bend, the loss in the optical power is extremely small and 

unobservable. However, as the radius of curvature decreases the loss increases 

exponentially until at a certain critical radius the fibre suffers radiation loss at bend/ curves 
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along the path.  The distributed modes in a bend optical fibre [23] can be represented as 

shown in Figure 2.4  

 

 
Fig. 2.4: Schematic representation of radiation loss of a mode at a fibre bend 

 
When a fibre is bent, the fraction of the mode field in the bent fibre that travels along the 

periphery of the circular arc in the cladding may at some stage be required to travel faster 

than the local plane wave velocity in order to maintain equiphase- fronts at radial planes. 

This being physically disallowed, the part of the modal field dissociates itself from the 

fibre and get lost through radiation from its sides [24].  

The curvature of the optical fibre waveguide has two effects:  Firstly, the stretching of the 

waveguide at the outside of the bend leads to a velocity increase in the outer wing of the 

mode and hence to an apparent decrease of the propagation constant β.  As a result, β to be 

replaced by ܴߚ
ᇱ

ݎ + ܴᇱൗ 	the mode field now decreases as 

݌ݔ݁      ቂ−∫ ௥݀(ݎ)ߛ
௔బ

 ቃ                   (2.16)ݎ

 

Second, a loss mechanism arises at ݎ =   ଴, where the mode velocity reaches  the  velocityݎ

of light  in  the cladding  material [ߛ(ݎ଴) = 0].  The mode energy passing this radius is 

radiated off.  The resulting loss leads to the exponential term in equation (2.13) 

The approximate form of ߛଶ(ݎ) is written in the form- 

 

(ݎ)ଶߛ                                      = −ଶ(0)ߛ ݎଶߚ2
ܴᇱൗ                               (2.17) 
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Again if ߚ is replaced by ݊ଵ݇଴, then inserting equation (2.13) in equation (2.17),  we get 

஻ߙ    = ଶఊమ(଴)
௡భ௞బ

	݌ݔ݁ ቈ− ଶ
ଷ
݊ଵ݇଴ܴᇱ ቀ

ఊమ(଴)
௡భమ௞బమ

− ଶ௔బ
ோᇲ
ቁ
ଷ ଶ⁄

቉                 (2.18) 

 

where,            			(0)ߛ = 	ඥߚଶ − ݇଴ଶ݊௖௟ଶ                                              (2.19) 

 

Where,  ܴ′ represents the radius of curvature, ܽ଴			is the core radius, ݊ଵ and ݊௖௟ are the RI 

of core and cladding of the fibre respectively, ߚ is the propagation constant and ݇଴ = ߱ ܿ⁄ . 

Thus the expression of loss coefficient due to bending is a function of the core and 

cladding refractive index and the radius of bending of the fibre. 

 

 

2.4   PRINCIPLE OF BARE AND TAPERED OPTICAL FIBRE    

   REFRACTOMETER 
 

Optical fibres can be used to measure the refractive index of liquids through intensity 

modulation of light by the measurand [24]. Kumar, A., et al. [27] had constructed a 

refractometer using bare tapered multimode fibre whose geometry has been shown in 

Figure-2.5. The principle and working of the refractometer given in this section is the 

foundation of the refractometer described in Chapter 4. The light (Gaussian) from a source 

entering into a cladded multimode fibre of core radius ai (fibre 1) is coupled into an 

uncladded fibre (fibre 2) of smaller radius a0 through an intermediate taper which is also 

uncladded. 

 
Fig. 2.5: Geometry of a tapered multimode fibre refractometer 
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The tapered portion can be thought as of interconnection of two fibres; fibre 1 of core 

diameter 2ai and fibre 2 of core diameter 2a0 (a0< ai).  The RI of the core in fibre 1, 2 and 

taper all have the same core refractive indices (= ݊ଵ) and the RI of the cladding for the 

initial section of fibre 1 is ݊௖௟ while the RI of cladding for the later section of the fibre 1, 

the taper portion and fibre 2 is the same (= ݊௟). A guided mode of effective index ߚଵ෪(=

݊ଵ cos  ଵ being the characteristic propagation angle) in fibre 1 get transformed to aߠ,ଵߠ

corresponding characteristic propagation angle ߠ(ܼ) as it propagates down the taper. 

 

                                                  	ܽ(ܼ) sinߠ(ܼ) = ܽ௜ sin ௜ߠ 		                                 (2.20) 

 

where ߠ(ܼ) denotes the angle that the ray makes with the axis of the taper at a distance ܼ 

from the input end of the taper and ܽ(ܼ)represent the radius of the taper at a distance Z 

from its thick end. Accordingly the effective mode ߚଵ෪  in fibre 1 will get transformed 

through the taper to a mode ߚଵ෪ =  ଶ෪ asߚ in fibre 2 with	ଶ෪ߚ

 

ଶ෪ߚ = ݊ଵ cosߠଶ = ݊ଵ ൥1− ܴଶ
݊ଵଶ − ଵଶ෪ߚ

݊ଵଶ
൩

ଵ
ଶ
 

                                                                  	= ቂ݊ଵଶ − ܴଶ ቀ݊ଵଶ − ଵଶ෪ቁቃߚ
భ
మ			                              (2.21) 

 

where,  ܴ = ܽ௜ ܽ଴	⁄ represents taper ratio. For a mode to be guided in fibre 2, one must 

have 

ଵ෪ߚ                             ≥ ቂ݊ଵଶ −
௡భమି௡೗

మ

ோమ
ቃ
భ
మ 			≅                                      (2.22)			௠ప௡෫ߚ

 

If ଴ܲ represents the total power injected into the guided mode of fibre 1 then the power in 

the modes with ߚଵതതത >  ௠ప௡തതതതതത will beߚ

 

                                                               ௕ܲ = ଴ܲ ൤
௡భమିఉ೘ഢ೙

మ෫

௡భమି௡೎೗
మ ൨																	                             (2.23) 

            

which on substitution of  ߚ௠ప௡෫  
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     	 ௕ܲ = ଴ܲ ൤
௡భమି௡೗

మ

ோమ൫௡భమି௡೎೗
మ ൯
൨				                  (2.24) 

where, 	ܴ = ܽ௜ ܽ଴⁄  

 

It is evident from equation (2.24) that power coupled to fibre 2 through the taper increases 

linearly with the decrease in	݊௟ଶ and it become zero when ݊௟  becomes equal to	݊ଵ.  

Therefore, the maximum value of RI of a liquid that can be measured by this refractometer 

is	݊௟௠௔௫ = 	 ݊ଵ.		Similarly, for minimum value of RI that can be measured by this 

refractometer is given by the condition ௕ܲ = ଴ܲ.  Thus, the minimum value of RI that can 

be measured by this refractometer can be expressed as  ݊௟௠௜௡ = ඥ݊ଵଶ − ܴଶ(݊ଵଶ − ݊௖௟ଶ )	.  

The lower limit of ݊௟ give the lower limit for the working of the refractometer, which can 

be extended right upto ݊௟ = 1 by selecting an appropriate value of ܴ. As example, for a 

value of ܴ=4, ݊௖௟=1.46 and ݊ଵ= 1.48, the value of ݊௟௠௜௡ =	1.11785. Therefore, if bare 

tapered multimode fibre is exposed to air (݊௔௜௥ =1.0003), transmitted power from fibre 1 to 

fibre 2 will be	 ଴ܲ.  

 

This type of refractometer is constructed from a plastic clad silica core fibre by uncladding 

a small portion of the fibre and then the uncladded portion is made into a taper by heating 

and pulling the uncladded portion. The tapered portion of the fibre is immersed in a liquid 

of refractive index ݊௟(< ݊ଵ).  By changing the liquid of different refractive index, aand 

monitoring the power reaching fibre 2, a calibration curve is drawn. This calibration curve 

is used to find the refractive index of unknown liquids.  

 

 

 

 

 

 

 

 


